What's more interesting than videos of cats chasing laser beams over
the kitchen floor? How about videos sent OVER laser beams from NASA's
International Space Station back to Earth?
A team of about 20 working at NASA's Jet Propulsion Lab in Pasadena,
Calif., through the lab’s Phaeton early-career-hire program, led the
development of the Optical Payload for Lasercomm Science (OPALS) investigation, which is preparing for a March 16 launch to the International Space Station aboard the SpaceX-3 mission. The goal? NASA’s first optical communication experiment on the orbital laboratory.
Scientific instruments used in space missions increasingly require
higher communication rates to transmit gathered data back to Earth or to
support high-data-rate applications, like high-definition video
streams. Optical communications—also referred to as “lasercom”—is an
emerging technology where data is sent via laser beams. This offers the
promise of much higher data rates than what is achievable with current
radio frequency (RF) transmissions and has the advantage that it
operates in a frequency band that is currently unregulated by the
Federal Communications Commission.
"Optical communications has the potential to be a game-changer," said
mission manager Matt Abrahamson. "Right now, many of our deep space
missions communicate at 200 to 400 kilobits per second.” OPALS will
demonstrate up to 50 megabits per second and future deep space optical
communication systems will provide over one gigabits per second from
Mars.
"It’s like upgrading from dial-up to DSL," added project systems engineer Bogdan Oaida.
"Our ability to generate data has greatly outpaced our ability to
downlink it. Imagine trying to download a movie at home over dial-up.
It’s essentially the same problem in space, whether we’re talking about
low-Earth orbit or deep space."
OPALS is scheduled to launch aboard a SpaceX Falcon 9 rocket, part of
a cargo resupply mission to the space station. The payload will be
inside the Dragon cargo spacecraft. Once deployed, OPALS will be
conducting transmission tests for a period of nearly three months, with
the possibility of a longer mission. After the Dragon capsule docks with
the station, OPALS will be robotically extracted from the trunk of the
Dragon, and then manipulated by a robotic arm for positioning on the
station’s exterior. It is the first investigation developed at JPL to
launch on SpaceX's Falcon rocket.
The technology demo
was conceived, developed, built and tested at JPL by engineers in the
early stage of their careers in order to gain experience building space
hardware and developing an end-to-end communication system. The system
uses primarily commercial off-the-shelf hardware and encloses
electronics in a pressurized container. "We were not as constrained by
mass, volume or power on this mission as we were by cost," said
Abrahamson, and this approach allowed a lower cost development on an
efficient schedule.
As the space station orbits Earth, a ground telescope tracks it and
transmits a laser beacon to the OPALS. While maintaining lock on the
uplink beacon, the orbiting instrument’s flight system will downlink a
modulated laser beam with a formatted video. Each demonstration, or
test, will last approximately 100 seconds as the station instrument and
ground telescope maintain line of sight. It will be used to study
pointing, acquisition and tracking of the very tightly focused laser
beams, taking into account the movement of the space station, and to
study the characteristics of optical links through Earth’s atmosphere.
NASA will also use OPALS to educate and train personnel in the operation
of optical communication systems.
The success of OPALS will provide increased impetus for operational
optical communications in NASA missions. The space station is a prime
target for multi-gigabit per second optical links. Fast laser
communications between Earth and spacecraft like the station or the Mars Curiosity rover would enhance their connection to engineers and scientists on the ground as well as to the public.
OPALS is a partnership between NASA’s Jet Propulsion Laboratory in
Pasadena, Calif.; the International Space Station Program based at
Johnson Space Center in Houston; Kennedy Space Center in Florida;
Marshall Space Flight Center in Huntsville, Ala., and the Advanced
Exploration Systems Division at NASA Headquarters in Washington.
No comments:
Post a Comment