A team of NASA and international scientists for the first time have
gathered a detailed understanding of the effects on Earth from a small
asteroid impact.
The unprecedented data obtained as the result of the airburst of a
meteoroid over the Russian city of Chelyabinsk on Feb. 15, 2013, has
revolutionized scientists' understanding of this natural phenomenon.
The Chelyabinsk incident was well observed by citizen cameras and
other assets. This provided a unique opportunity for researchers to
calibrate the event, with implications for the study of near-Earth
objects (NEOs) and developing hazard mitigation strategies for planetary
defense. Scientists from nine countries have now established a new
benchmark for future asteroid impact modeling.
"Our goal was to understand all circumstances that resulted in the
shock wave," said meteor expert Peter Jenniskens, co-lead author of a
report published in the journal Science. Jenniskens, a meteor astronomer
at NASA’s Ames Research Center
and the SETI Institute, participated in a field study led by Olga Popova
of the Institute for Dynamics of Geospheres of the Russian Academy of
Sciences in Moscow in the weeks following the event.
“It was important that we followed up with the many citizens who had
firsthand accounts of the event and recorded incredible video while the
experience was still fresh in their minds," said Polpova.
By calibrating the video images using the position of the stars in
the night sky, Jenniskens and Popova calculated the impact speed of the
meteor at 42,500 mph (19 kilometers per second). As the meteor
penetrated through the atmosphere, it efficiently fragmented into
pieces, peaking at 19 miles (30 kilometers) above the surface. At that
point the light of the meteor appeared brighter than the sun, even for people 62 miles (100 kilometers) away.
Due to the extreme heat, many of the pieces of the debris vaporized
before falling out of the orange glowing debris cloud. Scientists
believe that between 9,000 to 13,000 pound (4,000 to 6,000 kilograms) of
meteorites fell to the ground. This included one fragment approximately
1,400 pound (650 kilogram) recovered from Lake Chebarkul on October 16,
2013, by professional divers guided by Ural Federal University
researchers.
NASA researchers participating in the 59 member consortium study
suspect that the abundance of shock fractures in the rock contributed
its break up in the upper atmosphere. Meteorites made available by
Chelyabinsk State University researchers were analyzed to learn about
the origin of the shock veins and their physical properties.
"One of these meteorites broke along one of these shock veins when we
pressed on it during our analysis," said Derek Sears, a meteoriticist
at Ames.
Mike Zolensky, a cosmochemist at NASA’s Johnson Space Center in
Houston, may have found why these shock veins (or shock fractures), were
so frail. They contained layers of small iron grains just inside the
vein, which had precipitated out of the glassy material when it cooled.
"There are cases where impact melt increases a meteorite's mechanical
strength, but Chelyabinsk was weakened by it," said Zolensky.
The impact that created the shock veins may have occurred as long ago
as 4.4 billion years. This would have been 115 million years after the
formation of the solar system, according to the research team, who found
that the meteorites had experienced a significant impact event at that
time.
“Events that long ago affected how the Chelyabinsk meteoroid broke up
in the atmosphere, influencing the damaging shockwave,” said
Jenniskens.
Research is being conducted to better understand the origin and
nature of NEOs. These essential studies are needed to inform our
approach to preparing for the potential discovery and deflection of an
object on a collision course with the Earth.
NASA's recently announced asteroid initiative will be the first
mission to capture and relocate an asteroid. It represents an
unprecedented technological feat that will lead to new scientific
discoveries and technological capabilities that will help protect our
home planet.
Aside from representing a potential threat, the study of asteroids
and comets represent a valuable opportunity to learn more about the
origins of our solar system, the source of water on the Earth, and even
the origin of organic molecules that lead to the development of life.
No comments:
Post a Comment